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An attempt to find a probability-amplitude-based Hamiltonian representation of the symmetrical version of
integrable semidiscrete multicomponent nonlinear Schrodinger systems is made. Thus the on-cell locality of
the general point transformation in combination with the model multicomponentness is shown to contradict the
concept of canonical Hamiltonian representation in terms of probability amplitudes. Nevertheless, the above
concept can be realized in a slightly adjusted semidiscrete multicomponent nonlinear Schrodinger system that
preserves some physically valuable solutions of the original (either symmetric or asymmetric) integrable
model. The advantages of the adjusted Hamiltonian model for the analysis of real physical systems are
formulated. Examples of longitudinal and lateral soliton dynamics on multichain tubular lattices subjected to

uniform electric and magnetic fields are given.
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I. INTRODUCTION

The driving force of the present research appears to have
been ignited by academician Alexander S. Davydov in a dis-
cussion concerning some basic results [ 1] on the perturbation
theory for the Ablowitz-Ladik version of a semidiscretized
nonlinear Schrédinger system and mainly on its application
to the Peierls-Nabarro problem in essentially nonlinear mo-
lecular chains presumably of biological origin. The principal
question asked by Davydov was whether it is possible to
rewrite the theory in more clear physical terms inasmuch as
the direct sense of the Ablowitz-Ladik field amplitudes hap-
pens to be rather ambiguous. The positive answer would give
the green light for the results [1] to be popularized in a new
edition of the monograph Solitons in Molecular Systems [2].

Although the answer was not done during the time, the
idea to make the theory more appropriate for physicists was
reborn somewhat later [3,4] when we managed to reformu-
late the Ablowitz-Ladik model [5-7] in terms of probability
amplitudes similar to their prototypes in a continuous
Zakharov-Shabat system [8] and as a result to propose a
physically motivated variational treatment of the Peierls-
Nabarro problem in realistic physical systems modeled by
one or another version of nonintegrable semidiscretized non-
linear Schrédinger equations.

For example, the original Ablowitz-Ladik equations, with
the attractive nonlinearity [5-7]

+ig(n) =[1+ q(n)r(n)]6H/dr(n), (1)

—ir(n) =1+ r(n)q(n)]oH/dg(n), (2)

turned out to be convertible into the standard Hamiltonian
form [3,4]

+i0Q(n) = dH/IR(n), (3)
—iR(n) = HI3Q(n), (4)
by the following on-site point transformation:
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q(n) = {exp[Q(n)R(n)] - 1}Q(n)/R(n), (5)

r(n) = V{exp[R(n)Q(n)] = 1}R(n)/Q(n). (6)

Here the overdot stands for differentiation with respect to
dimensionless time 7 and the quantities g(n) and r(n) are
complex-conjugate field amplitudes without clear physical
meaning (referring to as nearly probability amplitudes),
whereas Q(n) and R(n) are true complex-conjugate probabil-
ity amplitudes to find the nth site of the discrete chain to be
excited. The Hamiltonian function in original system (1) and
(2) is given by

H== 2 [q(m)r(m+ 1)+ q(m+1)r(m)], (7

m=—o0

while the Hamiltonian function in its transformed counter-
part (3) and (4) is understood to be that obtained by inserting
the relationships between the old g(n) and r(n) and new Q(n)
and R(n) field variables (5) and (6) into the original Hamil-
tonian (7).

The interpretation of new amplitudes Q(n) and R(n) as the
probability amplitudes is based upon the property

S QmR(m =0, (8)

m=—w

readily recognizable as the conservation law for the total
number of excitations within a chain. Namely, for this reason
the transformed system (3) and (4) was called as the physi-
cally corrected [3] or physically acceptable [4] one.

Analogously with the Hamiltonian (7) the total momen-
tum

p=§ 2 [gmyrtm+ D) =glm+Drim)] — (9)

m=—m.

is also transformable to the corrected variables Q(n) and

R(n) [4].
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The question arises whether or not the similar probability
amplitude Hamiltonian representation is possible for
the multicomponent integrable semidiscrete nonlinear
Schrédinger systems [9-16] which could be used as good
candidates for modeling real quasi-one-dimensional struc-
tures of different physical origins.

For some of them the problem was solved positively [15];
however, for the systems of Manakov type [9-14] only an
approximate approach is known [17,18]. The problem be-
comes even more intriguing inasmuch as it is precisely the
quasi-one-dimensional (i.e., multichain) molecular aggre-
gates but not purely one-chain ones that are able to demon-
strate the structural robustness in a thermodynamical sense

[19].

II. LAGRANGE-BRACKETS APPROACH TO
THE TRANSFORMATION OF THE
TSUCHIDA-UJINO-WADATI SYSTEM

Among the known integrable semidiscrete nonlinear
Schrodinger systems of Manakov type the most reliable for
seeking its Hamiltonian representation is the Tsuchida-Ujino-
Wadati model [10]

M
+iqq(n) + 2 faﬁ‘]ﬁ(”)
B=1

+[1+v()]lga(n+1)+q,(n-1]=0,  (10)

M

- lra(n) + E rﬂ(n)tﬁa
B=1

+[1+v(n)]rn+1)+r,(n-1)]=0, (11)

M
wn) = 2 qpn)rgn), (12)
B=1

where g,(n) and r,(n) can be treated as field amplitudes on
the ath chain within the nth unit cell, while 7,5 as the pa-
rameters responsible for the linear resonant coupling be-
tween the chains; M is the number of chains. The parameter
of intercell linear coupling is seen to be normalized to unity.

For the sake of brevity here and later in this paper we
understand the term ‘“Hamiltonian representation” as the
Hamiltonian representation pretending to be written by
means of probability amplitudes in contrast to the Hamil-
tonian structure in terms of scattering data developed by Ger-
djikov and Ivanov [9]. For the same reason of brevity only
the model with the attractive nonlinearity—i.e., the model
(10)—(12) with field amplitudes g,(n) and r,(n) being com-
plex conjugate and consequentl}; with interchain resonant
matrix 7, being Hermitian 7,5=1,,—will be inspected. It is
worth while mentioning that the Tsuchida-Ujino-Wadati sys-
tem (10)—(12) appears to be the only known integrable semi-
discrete system of Manakov type where either the reduction
ro(n)=+gq,(n) or the reduction r,(n)=-q,(n) is naturally
permitted. As the matter of fact it has been rather sophisti-
catedly designed precisely for such a purpose [10].
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In order to distinguish the Manakov-type models admit-
ting the reductions r,(n)=* qZ(n) from those where the re-
ductions r,(n)= iqZ(n) are forbidden the adjectives “sym-
metric” and “asymmetric,” respectively, appear to be useful
[11].

Although the interchain coupling parameters 7,z in the
Tsuchida-Ujino-Wadati (i.e., symmetric) system are usually
assumed to be time independent [10], they similarly to an-
other (i.e., asymmetric) model [14] might be arbitrary func-
tions of time 7, thus allowing the system (10)—(12) to be
parametrically driven [20-22]. We discard the latter opportu-
nity as an unnecessary complication and adopt the traditional
point of view. Then the terms with ¢,5 and 74, can be elimi-
nated by the gauge transformation [23] corresponding for-
mally to the original model (10)-(12) with zero-valued ¢,4
and #g,. As a result the system (10)—(12) is converted into the
following shorthand:

+ig,(n) =1+ v(n)]oH/dr (n), (13)

—ir,(n)=[1+ v(n)]0H/dq(n), (14)

where the function

M 0
H=- 2 2 [Q;;(m)rﬁ(m +1) +qgim + 1)"5(”1)]
B=1 m=—

(15)
is taken as the linear combination of appropriate conserved
quantities.

The trial assumption about expressions
{qa(n)’rﬁ(m)} = l[l + V(n)](saﬁﬁnm’ (16)
{ga(n).qg(m)} = 0= {r,(n),rg(m)}, (17)

as some Poisson structure analogous to that for the Ablowitz-
Ladik model [24-32] contradicts the Jacobi identities [de-
spite formally producing the Hamiltonian-mimicry represen-
tation

q4a(n) ={H,q,(n)}, (18)

Fo(n) ={H,r,(n)}, (19)

for the inspecting equations (13)—(15)] and thus should be
discarded as the wrong one. To put it differently, any other
steps based on the pseudo-Hamiltonian formulation
(16)—(19) are unable to achieve any true Hamiltonian formu-
lation including that in terms of probability amplitudes.

In what follows we will rely upon another way of reason-
ing, assuming one-to-one functional correspondence between
the old ¢,(n) and r,(n) and the new (abstract for the time
being) Q,(n), R,(n) sets of dynamical variables, where n
runs through the integers from minus to plus infinity, while «
spans the integers from 1 to M. Then after some straightfor-
ward manipulations Egs. (13) and (14) on the set of variables
qq(n) and r,(n) are converted into the equations
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M 0
=2 2 [Ra(n),04(m)104(m)
B=1 m=—x>
M ©
=2 2 [Run),Ra(m)IR5(m) = dH/IR (1),
B=1 m=—x
(20)
M 0
— 2 2 [Qu(n),Ra(m)IR 5(m)
B=1 m=—x
M o
— 2 X [0un),05(m)]104(m) = IHIIQ (),
B=1 m=-x
(1)

on the set of variables Q,(n) and R,(n). Here the quantities
[Ra(n) s Qﬂ(m):L [Ra(n) 7R[3(m)] and [Qa(n) ’Rﬁ(m)l
[Q4(n),Q4(m)] are given by the definition

(7613(7”) 3"3("1) B Wﬂ(m) 3‘13(’")
oF G oF G
1+ v(m)

M o
[F.G]=iX >

B=1 m=—c

s

(22)

resembling the definition of Lagrange brackets [33]. Provid-
ing a proper enumeration of the variables the above quanti-
ties supplemented by the conditions of self-sufficiency be-
come responsible for the symplectic representation of model
under consideration [34,35].

III. DEPENDENCE OF OLD DYNAMICAL VARIABLES ON
NEW ONES: STEP-BY-STEP SPECIFICATIONS

Analyzing the just obtained equations (20) and (21) we
see that they acquire the canonical Hamiltonian form

+iQ,(n) = 0H/IR ,(n), (23)
— iR (n) = GH/IQ o(n), (24)

under the conditions
[Qa(”)’RB(m)] =+ i(saﬁ(snm5 (25)
[Q4(n),0p5(m)]=0, (26)
[Ra(n)’ QB(m)] == ib‘aﬁgnm’ (27)
[R(n),Rg(m)]=0, (28)

serving as the first step in the specification of the previously
abstract functional dependence of old variables on the new
ones.

Likewise the original amplitudes ¢,(n) and r,(n) the
transformed amplitudes Q,(n) and R,(n) are seen to be
treated as complex-conjugated ones. As a consequence we
can adopt the parametrizations
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qa(n) = \v,(n) expl+ igy(n)], (29)
ra(n) = \vy(n) expl- igy(n)] (30)
and
Q) = \pa(n) expl+ it (n)], (31)
R(n) = pa(n) expl- i, ()], (32)

where the moduli v,(n) and p,(n) and phases ¢,(n) and
i,(n) are assumed to be real-valued quantities. These substi-
tutions draw the specification conditions (25)—(28) to be es-
sentially modified and yield

[pa(n);pp(m)] =0, (33)
[ha(n); pp(m)] =0, (34)
[pa(n); thg(m)] =+ Supym, (35)
[#a(n):pp(m)] == OupSim (36)

where the bracket entries [p,(n); pg(m)], [,(n); ¥g(m)] and
[pa(n); hg(m)], [,(n); pg(m)] are determined via the defini-
tion

v &Vﬁ(m) @B(m)_(9¢3(m) é’Vg(m)
[figl=2 2 7% oy %

B=1 m=-» 1+ V(m)

. (37)

Considering the physically corrected version (3) and (4)
of basic Ablowitz-Ladik system (1), (2), and (7) it is easy to
observe that on-site relationships (5) and (6) between origi-
nal ¢(n) and r(n) and corrected Q(n) and R(n) variables are
actually applicable to the whole Ablowitz-Ladik hierarchy
defined as an infinite set of systems (1) and (2) with Hamil-
tonian functions running through real-valued superpositions
of conserved quantities taken from the infinite set [22]. Gen-
eralizing the above point of view into the basic Tsuchida-
Ujino-Wadati system (10)—(12) and its hierarchy it is plau-
sible to suppose the functional relationships between the
original q,(n) and r,(n) and corrected Q,(n) and R, (n) dy-
namical variables to be on-cell ones—i.e., to adopt that

dqo(n) - dqu(m)
dQam) "0 (m)’ (38)
dqo(n) - 9q4(m)
dro(n) - dry(m)
dre(n) 5 r,(m) 41)

19Qﬁ(m) oo 3Q,8(m) .

This is the second step of our argument.
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The third step consists in the identification of the quantity
In[1+v(n)] with the number of excitations within the nth
unit cell,

M
p(n) = 2 pg(n), (42)
B=1

begetting the explicit functional dependence

v(n) = exp[p(n)] - 1. (43)

This step is naturally dictated by the lowest conservation law

4 > In[1+ vm)]=0 (44)
dr

m=—0

of the Tsuchida-Ujino-Wadati system.

Despite of all steps directed to concretization of mapping
the set of ¢,(n) and r,(n) onto the set of Q,(n) and R (n) the
resulting specification formulas, in general, remain ex-
tremely complicated for the analysis and practical calcula-
tions. Thus, several attempts dealing with a number of plau-
sible mapping Ansdtze have failed to give a positive result
stumbling on this or that contradiction.

For this reason we decided making the next move without
any particular Ansatz but restricting ourselves to the simplest
nontrivial case of a two-chain model when M =2. In so doing
the parametrizations

()= 51 = tah y( 1), (45)
vy(n) = %[1 + tanh y(n)v(n), (46)
e1(n) = o) + (). (47)
() = oln) = 6(n) (48)
and
pi(n) = 311~ tanh ()], (49)
paln) = 511+ tanh x(1) (o), (50)
(1) = n) + \n), 51)
) = n) ~ \(n), (52)

when having been applied to the basic specification condi-
tions (33)—(36) in combination with the second-step and
third-step assumptions (38)—(41) and (42),(43), are proven to
be very helpful. After straightforward but somewhat lengthy
calculations we have

dy(n) 96(n) _ dy(n) 96(n) _ cosh® y(n) p(n)
ox(n) ON(n)  IN(n) dx(n)  cosh® x(n) 1 —exp[— p(n)]’
(53)
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ay(n) 26(n)  ay(n) 26(n) _
ax(n) dp(n)  dgn) ax(n) 0. (54)
ay(n) 6(n) ~ dy(n) 36(n) 0, (55)

ap(n) N(n)  IN(n) dyp(n)

dp(n) B d6(n)

o) = m tanh y(n)
. [ ay(n) 96(n)  ay(n) aa(m} 1= exp[= p(n)]
dp(n) ox(n)  dx(n) dp(n) cosh? y(n)

(56)

de(n) _ 96(n)
PORED tanh y(n) — tanh x(n)

. [ ay(n) 90n) _ dy(n) aem)} 1 = expl—p(n)]
dp(n) IN(n)  IN(n) dp(n) cosh? y(n)

s

(57)

_z?(p(n) = _00(11) tanh y(n) + 1

yln) ~ apln)
[ay(n) 36(n) _ dy(n) aa(n)] 1 - expl= p(n)]
ap(n) dyfn)  oy(n) dp(n) ] cosh® y(n)

(58)

This set of equations, despite its rather unwieldy essentially
nonlinear structure, permits a simple test of compatibility.
Indeed the demand of cross differentiation

Fo(n)  Feln)
N(n)ox(n) — ax(n)d(n)

checked on two equations (56) and (57) for de(n)/dx(n) and
dp(n)/dN(n) with using the first equation (53) of the set is
reduced to the condition

p(n) =exp[- p(n)], (60)

which at an arbitrary p(n) can never be satisfied.

Thus, we came to the contradiction indicating that the
Hamiltonian representation in terms of probability ampli-
tudes for the Tsuchida-Ujino-Wadati model (13)—(15) is im-
possible at least under the adopted though very plausible
assumptions.

(59)

IV. APPROXIMATE HAMILTONIAN REPRESENTATION
PRESERVING EXACT FACTORIZED SOLUTIONS

It would not be right to conclude the paper with the sole
proclamation of a negative result as concerns a particular
very promising integrable model (10)—(12).

Of course, integrable models play a significant role in
physical investigations serving as the foundation for the de-
velopment of some approximate procedure to solve or ana-
lyze the physically motivated equations. However, as a mat-
ter of fact the wide nominal potentialities of any integrable
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model are usually restricted to the exploration of its simplest
(supposedly one-soliton) solutions. In this respect there is no
principal difference between an exact integrable model and
its slightly adjusted though presumably nonintegrable coun-
terpart preserving some valuable class of solutions. More
important is the ability of the adjusted model to be properly
used for the purposes of approximate integration of the origi-
nal physical system.

Fortunately, the basic symmetric Manakov-type system
(10)—(12) as well as the asymmetric ones [9,11-14] can be
readily adjusted to meet the above demands of weakened
integrability to say nothing of a Hamiltonian formulation of
the adjusted system or more strictly of its transformed ver-
sion rewritten in terms of probability amplitudes.

The main step of an approximate approach is common for
all systems of Manakov type, either symmetrical or asym-
metrical. It assumes the trivial substitution of point on-cell
transformations

qo(n) = Qu(n)E(n), (61)

ro(n) = Ry(n)E(n), (62)

En)= 4/ S22 =1 (63)
p(n)

and p(n) given by formula (42) directly into the system un-
der consideration. As a result dealing, for instance, with the
Tsuchida-Ujino-Wadati symmetrical system (10)—(12) the
exact equations for the probability amplitudes Q,(n) and
R,(n) are found to be

with

dE(n)
dp(n)

+iQ,(n) = o, +2E(n+1)

R (1)

M
X 2 [Qun)Qgn+1) = Qun + 1)Q (1) R 5(n)
B=1

dE(n)

+2E(n - de(n)

M
X 2 [0u(n)Qgn—1) = Qun = 1)Q4n) IR 4(n),
B=1

(64)
R (n) = oH, 2E( l)dE(n)
TR = 500 T o)
M

X 2 [Ry(mRg(n+ 1) = Ry(n+ DR 5(n)]10 5(n)
B=1

+2E(n - l)ii—((nn;
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M
X 2 [Ra(m)Rg(n = 1) = Ry(n = DR4(n)1Q4(n),
B=1

(65)

where
H,=H, +H, (66)

while

M M o
H, =- 21 ﬁEl EwRa(m)raﬁQﬁ(m), (67)
Moo
Hy=- ﬁEl > E(m+1)E(m)

These equations conserve the quantities H; and
M 0

N=2 2 Qgm)Rgm), (69)

B:l m=—o0

.M >
P=é2 S E(m+ 1)E(m)

B: 1 m=—

X[Q,B(m)Rﬁ(m +1) - Qﬁ(m + 1)R,B(m)]’ (70)

being the straightforward replicas of those yielded by the
basic multicomponent system (10)—(12), but do not conserve
the gauge-dependent quantity H, Eq. (67), even at time-
independent interchain coupling parameters 7,5 as is ob-
served for genuine (continuous) Manakov-type systems [12]
(N.B. Manakov himself had considered only the simplest
version M=2 with H, =0 [36]). The latter problem is
caused by the second and third right-hand-side terms in each
of transformed equations (64) and (65). The same right-
hand-side terms destroy also the desirable canonical Hamil-
tonian structure

+iQ,(n) = 0H,/ IR ,(n), (71)

— iR (n) = 0H,/3Q ,(n), (72)

being further referred to as the adjusted semidiscrete multi-
component system.

The discrepancy between the integrable semidiscrete and
integrable continuous Manakov-type systems with respect to
a description of the transverse dynamics strengthens the po-
sitions of adjusted semidiscrete multicomponent models
(66)—(68), (71), and (72) inasmuch as it removes the ob-
stacles in providing the quantities H , Eq. (67), and H, Eq.
(68), with clear physical interpretation as the lateral and lon-
gitudinal parts of total Hamiltonian H,, Eq. (66), respec-
tively. The adjusted model preserves the total number of ex-
citations, N, Eq. (69), and the longitudinal Hamiltonian H,,
Eq. (68), to be conserved adding to them the conservation of
transverse Hamiltonian H |, Eq. (67), at dt,g/dT=0.

In this context it would be interesting to test the adjusted
model (66)—(68), (71), and (72) on its complete integrability.
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This important and maybe difficult question could be a mat-
ter for separate research. For example, the quantity P given
by formula (70) fails to be conserved by the adjusted model
and the correct expression claiming to describe the total mo-
mentum still has to be found.

Here we would like only to underline that the adjusted
multicomponent system (66)—(68), (70), and (72) preserves a
wide class of solutions typical of the basic multicomponent
system taken in its transformed form (64)—(68)—namely,
solutions of factorized type Q,(n)=b,Q(n) and R,(n)
=bZQ*(n) (Egzlbﬂb:;: 1) that naturally include the one-
soliton solution [17,18]. Indeed inserting the above factor-
ized Ansatz into the transformed basic equations (64)—(68)
we see that the terms spoiling the Hamiltonian representation
become zeros identically, thus making the basic and adjusted
models indistinguishable. As a consequence the quantity P,
Eq. (70), calculated on the factorized Ansatz is proven to be
conserved by either model.

V. MAIN FEATURES OF THE ONE-SOLITON DYNAMICS
ON TUBULAR LATTICES

Considering the multicomponent semidiscretized nonlin-
ear Schrodinger system (66)—(68), (71), and (72) character-
ized by the adjusted Hamiltonian H,=H | + H; we can under-
line its two valuable aspects: first, the presence of the
transverse part H; in the Hamiltonian H, and, second, the
mere Hamiltonian formulation of the system as a whole.

Indeed, the permitted variability in the transversal cou-
pling parameters 7,z provides wide possibilities in modeling
a practically arbitrary geometrical lattice structure in cross
section when dealing with bunches of coupled one-
dimensional chains typical of natural [37,38,2] or synthe-
sized [39-41] essentially anisotropic macromolecules with a
and n playing the role of lateral and longitudinal lattice co-
ordinates of constituent molecules, respectively. For ex-
ample, adopting 7, as

tap=texp(—i®/M)A(a-B+1)
+texp(+i®/M)A(a-B-1), (73)

we come to the tubular quasidimensional lattice structures
resembling the well-known carbon nanotubes [39-41]. Here
the notation

1 X Qi
A(y) = ME ew(vw) (74)
x=1

serves for the generalized delta Kronecker symbol being
equal to unity for y=0, =M, =2M,... and zero otherwise,
and the quantity ®/M is reserved for the Peierls phase factor
[42,13,14,16] responsible for the external magnetic field,
while the parameter ¢ determines the strength of coupling
between the neighboring chains. For another example deal-
ing this time with the arrangements of optical fibers we can
choose the parameters 7,5 as

tap=tA(a— B+ D[1 - A(B-1)A(a-M)]
+iA(a=B=D[1=Ala= DAB-M)]  (75)

and prescribe the variables « and n to mark fibers in plane
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orthogonal to the fiber axes with 7 being the coordinate along
the fibers. Thus essentially two-dimensional arrangements of
fibers can be modeled in a generalization of models treating
experiments on a purely one-dimensional array of coupled
optical waveguides [43].

As for the aspect concerning the Hamiltonian formulation
we bear in mind the good opportunity for a standard Leg-
endre transformation from a Hamiltonian to Lagrangian rep-
resentation with forthcoming application of a trial Lagrang-
ian technique [44,3,45,17,18]. We demonstrate this approach
for the analysis of the soliton dynamics on tubular lattice
structure subjected to external magnetic and electric fields
both directed along the tube axis assuming the probability
amplitudes Q,(n) and R,(n) to be associated with charged
carriers. The respective Lagrangian function is given by the
expression

.M >
L=33 3 [Rum)Quln) - Roln) Quln)]

a=1 n=—»
M M g M )

+ 2 2 D Ra(W1,504n) + X 2 E(n+ 1)E(n)
a=1 B=1 n=—= a=1 n=—x

X [Qu(n + DR (1) + Ry(n +1)0,4(n)]
M o

+ 2 2 nER(n)Qu(n), (76)
a=1 n=—»

where the term £ describes the uniform electric field while
the uniform magnetic field B is masked into the interchain
resonant matrix tag Eq. (73), via dimensionless magnetic
flux

e
= [Bls (77)

through the cross section of tubular lattice structure. Here S
is the area of an M-angular polygonal element with vertices
located on the molecules of the same unit cell. The magnetic
field B is supposed to be directed along the positive direction
of the discrete longitudinal coordinate n.

The trial Lagrangian function £ is set to ﬂlge the Lagrang-
ian function on the collective variables b, b, x, k, w, and 7
obtained by the substitution of a one-soliton Ansatz

0,(n) =b,\In[1 + sinh? u sech? u(n —z)] X exp(ikn + i)
(78)
into the main Lagrangian function L, Eq. (76), and calcula-

tion of all necessary sums over longitudinal »n and transverse
a coordinates under the normalizing condition

M
S bib=1. (79)
a=1

Fortunately, all sums including the last perturbative one are
calculated exactly and the use of standard Lagrangian for-
malism can be readily performed. As a result the variables u
and 7 evolve according to the equations

=0, (80)
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7=2 cosh u cos k, (81)

wﬂpile the other solitonic parameters form the M+ 1 pairs b,
b, and z, k of canonically conjugated variables that evolve
according to the Hamiltonian equations

M
+ibo=dHIAb, =~ 2 1,5bp, (82)
B=1
M
—ib, = dHIdbe =~ 2 btgas (83)
B=1
) sinh u |
i=HIk =2 sink, (84)
M
k=—dH/dz=E, (85)

with the effective Hamiltonian H given by

M M

2
H=-=sinhpcosk—zE- 2, >, bZtaﬁbB. (86)
M a=1 B=1

The collective variables b, bz and z, k are responsible, re-
spectively, for the lateral and longitudinal dynamics of the
soliton as a whole. These two sorts of dynamics are seen to
be completely separated.

The parameter z is proven to coincide with the mean
longitudinal coordinate of the nonlinear wave packet
(= _np(n)/(Z,__.p(n)] calculated on the one-solitonic
Ansatz (78) and (79) and at a time-independent external elec-
tric field it is bound to be confined within the finite interval
of length zZ.—Zmin=(4/u&)sinh w. This effect known as
Bloch dynamical localization [46,29,20] emanates from the
interplay between the finiteness of the longitudinal kinetic
energy band (the consequence of structure discreteness) and
the monotonic dependence of longitudinal potential energy
due to the conservation of total effective longitudinal energy
[two first terms on right-hand side of formula (86)]. The
direct integration of dynamical equations (84) and (85) con-
firms this statement, and we readily come to the Bloch oscil-
lations with the amplitude A;=(2/u&)sinh w and the cyclic
frequency wj=E.

The most clear evidence of Bloch oscillations in their
classical form has apparently been demonstrated in semicon-
ductor superlattices [47] while the optical effects conceptu-
ally analogous to the Bloch oscillations are observable in the
arrays of optical waveguides [48].

The lower the external electric field the longer is the in-
terval of Bloch localization z,,s—Zpni,- In the limit of zero
field (£=0) the longitudinal soliton dynamics becomes com-
pletely delocalized and degenerates into the trivial uniform
motion 7=0 as is seen from the respective dynamical equa-
tions (84) and (85).

Now let us look onto the lateral soliton dynamics. The
respective dynamical equations (82) and (83) are linear ones
and at time-independent external magnetic field can be easily
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integrated. Thus, using the explicit expression (73) for the
transverse resonant matrix ¢, corresponding to the tubular
lattice structure we obtain

[ MM
— 2 2 bgl0)
Mg m p
2min(B-a) . (277%+<I>>]
Xexp| ————— +2ittcos| —— | |.
M M

(87)

by(7) =

This formula shows that in general there are M distinct
modes of lateral oscillations with frequencies being essen-
tially controlled by the magnitude of magnetic flux ®. Nev-
ertheless, at particular magnitudes of flux some of the fre-
quencies may coincide or even can be softened to zero.

The most predictable and promising type of soliton dy-
namics is permissible on the lattices with two, three, four, or
six cyclically coupled chains when all lateral eigenfrequen-
cies

27x+ P
w(x) =2t cos v ) x=12,....,M, (88)

taken under the absence of magnetic flux (®=0), become
commensurate. In such a case there is a principal possibility
for the soliton density to be located completely on one of the
lattice chains at some equidistant moments of time provided
the initial conditions of soliton distribution have been prop-
erly chosen. This property seems to be very sound for trans-
porting charge or energy (or both) to the particular site of
a lattice so valuable, e.g., for biological macromolecules
[2,38]. To make the task successful the lateral and longitudi-
nal parts of the soliton dynamics must be properly synchro-
nized whereas the typical longitudinal size of solitons should
be as narrow as possible. On the other hand, the same prop-
erty of momentary one-chain location allows the soliton to
bypass the impure molecules under another proper synchro-
nization of its lateral and longitudinal dynamics.

A detailed analysis of bypassing phenomena (soliton sla-
lom in particular) on two-leg ladder lattices (M=2) is given
in our previous articles [17,18], while the correct definition
for the soliton longitudinal size in terms of parameter u with
account of the effect of breathing can be found in another of
our papers [22].

We end this section by establishing the notion of mean
lateral coordinates of soliton which alongside with the al-
ready mentioned definition of mean longitudinal coordinate
of soliton (quoted as the mean longitudinal coordinate of
nonlinear wave packet) could be useful in the visualization
of the average soliton dynamics as well as in a qualitative
understanding of soliton behavior under perturbations. Due
to the two-dimensional character of lateral soliton dynamics,
it is sufficient to introduce two lateral coordinates x and y
according to the formula
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M . ©
= exp(zj;ﬂ) 2 Ry(n)Q,4(n)

xX+iy= ol T = (89)
2 2 Ry(n)Q,n)
a=1 n=-m»

Here and later x and y have nothing to do with x(n) and y(n)
used for parametrizations (49), (50), (45), and (46) in Sec.
III. Restricting ourselves to the one-solitonic Ansarz (78) ac-
companied by its normalizing condition (79) the definition
(89) is readily reduced to the more simpler one

M -

xes
x+iy= > exp( v, )bea. (90)

a=1

In the particular case of solitons initially located on the yth
chain of six-chain tubular lattices [i.e., the case specified by
b,(0)=A(a-7y)exp(+id,) with « running from unity to 6]
this formula yields

iy

1
x(7) +iy(7) = 3 exp(7>

X3 cos| t7| cos — + V3 sin —
6 6

b
+ cos| 2¢7 cos g

d» - O
+ cos| t7| cos — — \3sin — . 91)
6 6

At the threading flux with ® being equal to zero we see that
all three frequencies of oscillations restore their commensu-
rateness and the initial values x(0) and y(0) of lateral coor-
dinates x(7) and y(7) resurrect repeatedly with the period
T,=27/t. But it is precisely the challenging point which con-
cerns the most effective use of solitonic transport (i) in
achieving the prescribed site (e.g., the site with acceptor) or
(ii) in bypassing the site with undesirable impurity.

VI. CONCLUSION

In conclusion, we have inspected the concept of probabil-
ity amplitudes as a conjectural paradigm for the canonical
Hamiltonian formulation of Manakov-type integrable semi-
discrete nonlinear systems. It was shown that under rather
general assumptions the above concept turned out to be con-
tradictory.

Instead we proposed the direct on-cell substitution intro-
ducing the probability amplitudes though without converting
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an exact system into canonical Hamiltonian form. Alterna-
tively the transformed exact system can be approximately
adjusted to the canonical Hamiltonian form that preserves a
wide class of physically interesting solutions and can serve
as an appropriate basis for the analysis of realistic physical
models on multileg ladder lattices. Indeed any real Hamil-
tonian system as a rule is characterized by the standard Pois-
son brackets. The study of its properties by means of a trial-
adjusted system with the standard Poisson structure seems to
be reliable since the meaning of field amplitudes during cal-
culations remains unchanged, thus forbidding an incorrect
treatment pathological to false (unphysical) effects.

In addition, we would like to stress that the proposed
adjusted multicomponent nonlinear system opens the door
for the notion of a lateral Hamiltonian, so natural and valu-
able for the description of slalom soliton dynamics on a lad-
der lattice with zigzag-distributed on-site impurities [17,18]
as well as for understanding the origin of an attractive-
repulsive alternative in an effective soliton interaction with
modified transverse bond [18]. Both of the just mentioned
effects are closely linked with the linear interchain coupling
exactly reproducible by the adjusted model.

In this respect the dropping of terms with transverse cou-
pling parameters 7,z under the good-looking pretext of their
elimination by the proper gauge transformation (as some-
times takes place when seeking solutions of exact integrable
models [10]) appears to be a completely incorrect procedure
when dealing with perturbed multicomponent physical sys-
tems where mere effects are dictated by the interplay be-
tween the interchain coupling and the physical perturbation.

We presented two explicit expressions for the transverse
coupling matrix associated with the tubular lattices (either
natural or synthesized) and with the two-dimensional array
of optical fibers.

Finally, we applied the trial Lagrangian approach to the
description of the longitudinal and lateral soliton dynamics
on tubular lattices subjected to uniform electric and magnetic
fields, paying attention to the effect of Bloch oscillations
(when the external electric field is turned on) and to the
selective transportation of energy and charge due to the pe-
riodic shrinking of soliton density in the lateral direction
accompanied by the proper synchronization with longitudi-
nal solitonic motion (mainly when the external electric field
is turned off). Here it is worth noticing that the uniform
electric and magnetic fields happen to be treated by the ef-
fective dynamical equations (80)—(85) on an absolutely exact
basis. In contrast, other types of external influence (e.g., the
perturbations caused by impurities) may be caught by the
trial Lagrangian formalism only approximately.
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